The degradation of mixed lineage kinase domain-like protein promotes neuroprotection after ischemic brain injury
نویسندگان
چکیده
Mixed lineage kinase domain-like (MLKL) protein was recently found to play a critical role in necrotic cell death. To explore its role in neurological diseases, we measured MLKL protein expression after ischemia injury in a mouse model. We found that MLKL expression significantly increased 12 h after ischemia/reperfusion (I/R) injury with peak levels at 48 h. Inhibition of MLKL by intraperitoneal administration of NSA significantly reduced infarct volume and improved neurological deficits after 75 min of ischemia and 24 h of reperfusion. Further, we found NSA reduced MLKL levels via the ubiquitination proteasome pathway, but not by inhibiting RNA transcription. Interestingly, NSA administration increased cleaved PARP-1 levels, indicating the protective effects of MLKL inhibition is not related to apoptosis. These findings suggest MLKL is a new therapeutic target for neurological pathologies like stroke. Therefore, promoting degradation of MLKL may be a novel avenue to reduce necrotic cell death after ischemic brain injury.
منابع مشابه
Neuroprotective effects of preconditioning ischemia on ischemic brain injury through down-regulating activation of JNK1/2 via N-methyl-D-aspartate receptor-mediated Akt1 activation.
Our previous studies have demonstrated that the JNK signaling pathway plays an important role in ischemic brain injury and is mediated via glutamate receptor 6. Others studies have shown that N-methyl-d-aspartate (NMDA) receptor is involved in the neuroprotection of ischemic preconditioning. Here we examined whether ischemic preconditioning down-regulates activation of the mixed lineage kinase-...
متن کاملThermostabilized chondroitinase ABC Promotes Neuroprotection after Contusion Spinal Cord Injury
Background: Chondroitinase ABC (cABC), due to its loosening impact on the extracellular matrix scaffold, has been used to enhance regeneration of injured axonal tracts after spinal cord injury (SCI). However, cABC thermal instability at physiological temperature has limited its clinical application. The disaccharide trehalose has been shown to increase the stability of cABC in body temperature....
متن کاملNeuroprotection of ischemic postconditioning by downregulating the postsynaptic signaling mediated by kainate receptors.
BACKGROUND AND PURPOSE Ischemic postconditioning, a brief episode of ischemia after a prolonged ischemic insult, has been found to reduce the delayed neuronal loss after stroke. However, the mechanisms underlying such endogenous neuroprotective strategy remain obscure. In this study, we try to explore the excitatory postsynaptic signal events associated with neuroprotective effect of ischemic p...
متن کاملMixed Lineage Kinase Domain-Like Pseudokinase (MLKL) Gene Expression in Human Atherosclerosis with and without Type 2 Diabetes Mellitus
Background: MLKL, one of the main downstream components of the necroptosis or programmed necrosis has recently been demonstrated in advanced atherosclerotic lesions. However, its precise role in the atherosclerosis pathogenesis still requires more elucidation. Our study was set to delineate both the changes in peripheral MLKL gene expression and its influence on disease severity in atherosclero...
متن کاملSignificant neuroprotection against ischemic brain injury by inhibition of the MEK1 protein kinase in mice: exploration of potential mechanism associated with apoptosis.
MEK1/2 is a serine/threonine protein kinase that phosphorylates and activates extracellular signal-responsive kinase (ERK)1/2. In the present study we explored the role of MEK1/2 in ischemic brain injury using a selective MEK1/2 inhibitor, SL327, in mice. C57BL/6 mice were subjected to a 30-min occlusion of the middle cerebral artery (MCAO) followed by reperfusion. Western blot analysis demonst...
متن کامل